Step |
Hyp |
Ref |
Expression |
1 |
|
explecnv.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
explecnv.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
explecnv.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
explecnv.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
explecnv.4 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
6 |
|
explecnv.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
7 |
|
explecnv.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
8 |
|
eqid |
⊢ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) |
9 |
|
0z |
⊢ 0 ∈ ℤ |
10 |
|
ifcl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ∈ ℤ ) |
11 |
9 3 10
|
sylancr |
⊢ ( 𝜑 → if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ∈ ℤ ) |
12 |
4
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
13 |
12 5
|
expcnv |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
14 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
15 |
14
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ V ) |
17 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
18 |
1 17
|
ineq12i |
⊢ ( 𝑍 ∩ ℕ0 ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) |
19 |
|
uzin |
⊢ ( ( 𝑀 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) |
20 |
3 9 19
|
sylancl |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) |
21 |
18 20
|
eqtr2id |
⊢ ( 𝜑 → ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) = ( 𝑍 ∩ ℕ0 ) ) |
22 |
21
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ↔ 𝑘 ∈ ( 𝑍 ∩ ℕ0 ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ ( 𝑍 ∩ ℕ0 ) ) |
24 |
23
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ ℕ0 ) |
25 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
26 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) |
27 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑘 ) ∈ V |
28 |
25 26 27
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
29 |
24 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝐴 ∈ ℝ ) |
31 |
30 24
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
32 |
29 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
33 |
23
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
34 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
35 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
36 |
|
fvex |
⊢ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
37 |
34 35 36
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
38 |
33 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
39 |
33 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
40 |
39
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
41 |
38 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
42 |
33 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
43 |
42 38 29
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) |
44 |
39
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
45 |
44 38
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 0 ≤ ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
46 |
8 11 13 16 32 41 43 45
|
climsqz2 |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 0 ) |
47 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
48 |
1 3 2 16 6 47
|
climabs0 |
⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 0 ) ) |
49 |
46 48
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |