| Step | Hyp | Ref | Expression | 
						
							| 1 |  | explecnv.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | explecnv.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 3 |  | explecnv.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | explecnv.5 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | explecnv.4 | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 6 |  | explecnv.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 7 |  | explecnv.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 8 |  | eqid | ⊢ ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) )  =  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) | 
						
							| 9 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 10 |  | ifcl | ⊢ ( ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  if ( 𝑀  ≤  0 ,  0 ,  𝑀 )  ∈  ℤ ) | 
						
							| 11 | 9 3 10 | sylancr | ⊢ ( 𝜑  →  if ( 𝑀  ≤  0 ,  0 ,  𝑀 )  ∈  ℤ ) | 
						
							| 12 | 4 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 12 5 | expcnv | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 14 | 1 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 15 | 14 | mptex | ⊢ ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) )  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) )  ∈  V ) | 
						
							| 17 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 18 | 1 17 | ineq12i | ⊢ ( 𝑍  ∩  ℕ0 )  =  ( ( ℤ≥ ‘ 𝑀 )  ∩  ( ℤ≥ ‘ 0 ) ) | 
						
							| 19 |  | uzin | ⊢ ( ( 𝑀  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( ( ℤ≥ ‘ 𝑀 )  ∩  ( ℤ≥ ‘ 0 ) )  =  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) ) | 
						
							| 20 | 3 9 19 | sylancl | ⊢ ( 𝜑  →  ( ( ℤ≥ ‘ 𝑀 )  ∩  ( ℤ≥ ‘ 0 ) )  =  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) ) | 
						
							| 21 | 18 20 | eqtr2id | ⊢ ( 𝜑  →  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) )  =  ( 𝑍  ∩  ℕ0 ) ) | 
						
							| 22 | 21 | eleq2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) )  ↔  𝑘  ∈  ( 𝑍  ∩  ℕ0 ) ) ) | 
						
							| 23 | 22 | biimpa | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  𝑘  ∈  ( 𝑍  ∩  ℕ0 ) ) | 
						
							| 24 | 23 | elin2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) | 
						
							| 27 |  | ovex | ⊢ ( 𝐴 ↑ 𝑘 )  ∈  V | 
						
							| 28 | 25 26 27 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 29 | 24 28 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 30 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 31 | 30 24 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 32 | 29 31 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 33 | 23 | elin1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 34 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( abs ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 36 |  | fvex | ⊢ ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  V | 
						
							| 37 | 34 35 36 | fvmpt | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 38 | 33 37 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 39 | 33 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 40 | 39 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 41 | 38 40 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 42 | 33 7 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 43 | 42 38 29 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) | 
						
							| 44 | 39 | absge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 45 | 44 38 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  0 ,  0 ,  𝑀 ) ) )  →  0  ≤  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 46 | 8 11 13 16 32 41 43 45 | climsqz2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⇝  0 ) | 
						
							| 47 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 48 | 1 3 2 16 6 47 | climabs0 | ⊢ ( 𝜑  →  ( 𝐹  ⇝  0  ↔  ( 𝑛  ∈  𝑍  ↦  ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) )  ⇝  0 ) ) | 
						
							| 49 | 46 48 | mpbird | ⊢ ( 𝜑  →  𝐹  ⇝  0 ) |