Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
efexp |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
3 |
1 2
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
4 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
7 |
3 6
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) |