| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expmhm.1 |
⊢ 𝑁 = ( ℂfld ↾s ℕ0 ) |
| 2 |
|
expmhm.2 |
⊢ 𝑀 = ( mulGrp ‘ ℂfld ) |
| 3 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑥 ) ∈ ℂ ) |
| 4 |
3
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ) |
| 5 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 7 |
|
nn0addcl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) |
| 11 |
|
ovex |
⊢ ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V |
| 12 |
9 10 11
|
fvmpt |
⊢ ( ( 𝑦 + 𝑧 ) ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 13 |
8 12
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 15 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑦 ) ∈ V |
| 16 |
14 10 15
|
fvmpt |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) |
| 18 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑧 ) ∈ V |
| 19 |
17 10 18
|
fvmpt |
⊢ ( 𝑧 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 ↑ 𝑧 ) ) |
| 20 |
16 19
|
oveqan12d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 22 |
6 13 21
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 23 |
22
|
ralrimivva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 24 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 25 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
| 26 |
|
ovex |
⊢ ( 𝐴 ↑ 0 ) ∈ V |
| 27 |
25 10 26
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) ) |
| 28 |
24 27
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) |
| 29 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 30 |
28 29
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) |
| 31 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
| 32 |
1
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 𝑁 ∈ Mnd ) |
| 33 |
31 32
|
ax-mp |
⊢ 𝑁 ∈ Mnd |
| 34 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 35 |
2
|
ringmgp |
⊢ ( ℂfld ∈ Ring → 𝑀 ∈ Mnd ) |
| 36 |
34 35
|
ax-mp |
⊢ 𝑀 ∈ Mnd |
| 37 |
33 36
|
pm3.2i |
⊢ ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) |
| 38 |
1
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ 𝑁 ) ) |
| 39 |
31 38
|
ax-mp |
⊢ ℕ0 = ( Base ‘ 𝑁 ) |
| 40 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 41 |
2 40
|
mgpbas |
⊢ ℂ = ( Base ‘ 𝑀 ) |
| 42 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 43 |
1 42
|
ressplusg |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ 𝑁 ) ) |
| 44 |
31 43
|
ax-mp |
⊢ + = ( +g ‘ 𝑁 ) |
| 45 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 46 |
2 45
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
| 47 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 48 |
1 47
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ 𝑁 ) ) |
| 49 |
31 48
|
ax-mp |
⊢ 0 = ( 0g ‘ 𝑁 ) |
| 50 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 51 |
2 50
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
| 52 |
39 41 44 46 49 51
|
ismhm |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) ) |
| 53 |
37 52
|
mpbiran |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) |
| 54 |
4 23 30 53
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ) |