Step |
Hyp |
Ref |
Expression |
1 |
|
expmhm.1 |
⊢ 𝑁 = ( ℂfld ↾s ℕ0 ) |
2 |
|
expmhm.2 |
⊢ 𝑀 = ( mulGrp ‘ ℂfld ) |
3 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑥 ) ∈ ℂ ) |
4 |
3
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ) |
5 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
6 |
5
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
7 |
|
nn0addcl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑦 + 𝑧 ) ∈ ℕ0 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) |
11 |
|
ovex |
⊢ ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V |
12 |
9 10 11
|
fvmpt |
⊢ ( ( 𝑦 + 𝑧 ) ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
13 |
8 12
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
15 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑦 ) ∈ V |
16 |
14 10 15
|
fvmpt |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 ↑ 𝑦 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) |
18 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑧 ) ∈ V |
19 |
17 10 18
|
fvmpt |
⊢ ( 𝑧 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 ↑ 𝑧 ) ) |
20 |
16 19
|
oveqan12d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
22 |
6 13 21
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
23 |
22
|
ralrimivva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
24 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
25 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
26 |
|
ovex |
⊢ ( 𝐴 ↑ 0 ) ∈ V |
27 |
25 10 26
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) ) |
28 |
24 27
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = ( 𝐴 ↑ 0 ) |
29 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
30 |
28 29
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) |
31 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
32 |
1
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 𝑁 ∈ Mnd ) |
33 |
31 32
|
ax-mp |
⊢ 𝑁 ∈ Mnd |
34 |
|
cnring |
⊢ ℂfld ∈ Ring |
35 |
2
|
ringmgp |
⊢ ( ℂfld ∈ Ring → 𝑀 ∈ Mnd ) |
36 |
34 35
|
ax-mp |
⊢ 𝑀 ∈ Mnd |
37 |
33 36
|
pm3.2i |
⊢ ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) |
38 |
1
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ 𝑁 ) ) |
39 |
31 38
|
ax-mp |
⊢ ℕ0 = ( Base ‘ 𝑁 ) |
40 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
41 |
2 40
|
mgpbas |
⊢ ℂ = ( Base ‘ 𝑀 ) |
42 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
43 |
1 42
|
ressplusg |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ 𝑁 ) ) |
44 |
31 43
|
ax-mp |
⊢ + = ( +g ‘ 𝑁 ) |
45 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
46 |
2 45
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
47 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
48 |
1 47
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ 𝑁 ) ) |
49 |
31 48
|
ax-mp |
⊢ 0 = ( 0g ‘ 𝑁 ) |
50 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
51 |
2 50
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
52 |
39 41 44 46 49 51
|
ismhm |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) ) |
53 |
37 52
|
mpbiran |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ↔ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) : ℕ0 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 0 ) = 1 ) ) |
54 |
4 23 30 53
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( 𝑁 MndHom 𝑀 ) ) |