Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑎 = 1 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 1 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑎 = 1 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 1 ) ) |
3 |
1 2
|
breq12d |
⊢ ( 𝑎 = 1 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑎 = 1 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑏 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑏 ) ) |
7 |
5 6
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ ( 𝑏 + 1 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) |
11 |
9 10
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑁 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑁 ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) ) |
17 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
18 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
19 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
20 |
|
exp1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 1 ) = 𝐵 ) |
21 |
19 20
|
breqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
22 |
17 18 21
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
23 |
22
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
24 |
23
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
25 |
|
simp2ll |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℝ ) |
26 |
|
nnnn0 |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝑏 ∈ ℕ0 ) |
28 |
25 27
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ℝ ) |
29 |
|
simp2lr |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℝ ) |
30 |
29 27
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) |
31 |
28 30
|
jca |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ) |
32 |
|
simp2rl |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ 𝐴 ) |
33 |
25 27 32
|
expge0d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ ( 𝐴 ↑ 𝑏 ) ) |
34 |
|
simp3 |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) |
35 |
33 34
|
jca |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
36 |
|
simp2l |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
37 |
|
simp2r |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
38 |
|
ltmul12a |
⊢ ( ( ( ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
39 |
31 35 36 37 38
|
syl22anc |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
40 |
25
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℂ ) |
41 |
40 27
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ) |
42 |
29
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℂ ) |
43 |
42 27
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
44 |
39 41 43
|
3brtr4d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) |
45 |
44
|
3exp |
⊢ ( 𝑏 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
46 |
45
|
a2d |
⊢ ( 𝑏 ∈ ℕ → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
47 |
4 8 12 16 24 46
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
48 |
47
|
impcom |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |
49 |
48
|
3impa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |