| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑎  =  1  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 1 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  1  →  ( 𝐵 ↑ 𝑎 )  =  ( 𝐵 ↑ 1 ) ) | 
						
							| 3 | 1 2 | breq12d | ⊢ ( 𝑎  =  1  →  ( ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 )  ↔  ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑎  =  1  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 𝑏 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐵 ↑ 𝑎 )  =  ( 𝐵 ↑ 𝑏 ) ) | 
						
							| 7 | 5 6 | breq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 )  ↔  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ ( 𝑏  +  1 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝐵 ↑ 𝑎 )  =  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) | 
						
							| 11 | 9 10 | breq12d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 )  ↔  ( 𝐴 ↑ ( 𝑏  +  1 ) )  <  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  <  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐵 ↑ 𝑎 )  =  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 15 | 13 14 | breq12d | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 )  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑎  =  𝑁  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑎 )  <  ( 𝐵 ↑ 𝑎 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 17 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 18 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 19 |  | exp1 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 20 |  | exp1 | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵 ↑ 1 )  =  𝐵 ) | 
						
							| 21 | 19 20 | breqan12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 )  ↔  𝐴  <  𝐵 ) ) | 
						
							| 22 | 17 18 21 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 )  ↔  𝐴  <  𝐵 ) ) | 
						
							| 23 | 22 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 ) ) | 
						
							| 24 | 23 | adantrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 1 )  <  ( 𝐵 ↑ 1 ) ) | 
						
							| 25 |  | simp2ll | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 26 |  | nnnn0 | ⊢ ( 𝑏  ∈  ℕ  →  𝑏  ∈  ℕ0 ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  𝑏  ∈  ℕ0 ) | 
						
							| 28 | 25 27 | reexpcld | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐴 ↑ 𝑏 )  ∈  ℝ ) | 
						
							| 29 |  | simp2lr | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 30 | 29 27 | reexpcld | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐵 ↑ 𝑏 )  ∈  ℝ ) | 
						
							| 31 | 28 30 | jca | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( ( 𝐴 ↑ 𝑏 )  ∈  ℝ  ∧  ( 𝐵 ↑ 𝑏 )  ∈  ℝ ) ) | 
						
							| 32 |  | simp2rl | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  0  ≤  𝐴 ) | 
						
							| 33 | 25 27 32 | expge0d | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  0  ≤  ( 𝐴 ↑ 𝑏 ) ) | 
						
							| 34 |  | simp3 | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) ) | 
						
							| 35 | 33 34 | jca | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 0  ≤  ( 𝐴 ↑ 𝑏 )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) ) ) | 
						
							| 36 |  | simp2l | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 37 |  | simp2r | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) ) | 
						
							| 38 |  | ltmul12a | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑏 )  ∈  ℝ  ∧  ( 𝐵 ↑ 𝑏 )  ∈  ℝ )  ∧  ( 0  ≤  ( 𝐴 ↑ 𝑏 )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) ) )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) ) )  →  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 )  <  ( ( 𝐵 ↑ 𝑏 )  ·  𝐵 ) ) | 
						
							| 39 | 31 35 36 37 38 | syl22anc | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 )  <  ( ( 𝐵 ↑ 𝑏 )  ·  𝐵 ) ) | 
						
							| 40 | 25 | recnd | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 41 | 40 27 | expp1d | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  =  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 ) ) | 
						
							| 42 | 29 | recnd | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 43 | 42 27 | expp1d | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐵 ↑ ( 𝑏  +  1 ) )  =  ( ( 𝐵 ↑ 𝑏 )  ·  𝐵 ) ) | 
						
							| 44 | 39 41 43 | 3brtr4d | ⊢ ( ( 𝑏  ∈  ℕ  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  <  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) | 
						
							| 45 | 44 | 3exp | ⊢ ( 𝑏  ∈  ℕ  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  <  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) ) ) | 
						
							| 46 | 45 | a2d | ⊢ ( 𝑏  ∈  ℕ  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑏 )  <  ( 𝐵 ↑ 𝑏 ) )  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  <  ( 𝐵 ↑ ( 𝑏  +  1 ) ) ) ) ) | 
						
							| 47 | 4 8 12 16 24 46 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  →  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 48 | 47 | impcom | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 49 | 48 | 3impa | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  <  𝐵 )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) |