| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑎 = 1 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 1 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑎 = 1 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 1 ) ) |
| 3 |
1 2
|
breq12d |
⊢ ( 𝑎 = 1 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑎 = 1 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑏 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑏 ) ) |
| 7 |
5 6
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ ( 𝑏 + 1 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) |
| 11 |
9 10
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 15 |
13 14
|
breq12d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 17 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 18 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 19 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 20 |
|
exp1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 1 ) = 𝐵 ) |
| 21 |
19 20
|
breqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
| 22 |
17 18 21
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
| 23 |
22
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
| 24 |
23
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
| 25 |
|
simp2ll |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℝ ) |
| 26 |
|
nnnn0 |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝑏 ∈ ℕ0 ) |
| 28 |
25 27
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ℝ ) |
| 29 |
|
simp2lr |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℝ ) |
| 30 |
29 27
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) |
| 31 |
28 30
|
jca |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ) |
| 32 |
|
simp2rl |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ 𝐴 ) |
| 33 |
25 27 32
|
expge0d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ ( 𝐴 ↑ 𝑏 ) ) |
| 34 |
|
simp3 |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) |
| 35 |
33 34
|
jca |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
| 36 |
|
simp2l |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 37 |
|
simp2r |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 38 |
|
ltmul12a |
⊢ ( ( ( ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
| 39 |
31 35 36 37 38
|
syl22anc |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
| 40 |
25
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℂ ) |
| 41 |
40 27
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ) |
| 42 |
29
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℂ ) |
| 43 |
42 27
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
| 44 |
39 41 43
|
3brtr4d |
⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) |
| 45 |
44
|
3exp |
⊢ ( 𝑏 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 46 |
45
|
a2d |
⊢ ( 𝑏 ∈ ℕ → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 47 |
4 8 12 16 24 46
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 48 |
47
|
impcom |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |
| 49 |
48
|
3impa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |