Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 0 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑘 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 · 𝑗 ) = ( 𝑀 · ( 𝑘 + 1 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑁 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
21 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
22 |
21
|
mul01d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 · 0 ) = 0 ) |
23 |
22
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( 𝐴 ↑ 0 ) ) |
24 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
25 |
23 24
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = 1 ) |
26 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
27 |
|
exp0 |
⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) |
29 |
25 28
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) |
30 |
|
oveq1 |
⊢ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
31 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
33 |
|
adddi |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) |
34 |
32 33
|
mp3an3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) |
35 |
|
mulid1 |
⊢ ( 𝑀 ∈ ℂ → ( 𝑀 · 1 ) = 𝑀 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · 1 ) = 𝑀 ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
38 |
34 37
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
39 |
21 31 38
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
40 |
39
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
41 |
40
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) ) |
42 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
43 |
|
nn0mulcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) |
44 |
43
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) |
45 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
46 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 · 𝑘 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
48 |
41 47
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
49 |
|
expp1 |
⊢ ( ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
50 |
26 49
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
51 |
48 50
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) ) |
52 |
30 51
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
53 |
52
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
54 |
53
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
55 |
5 10 15 20 29 54
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
56 |
55
|
expdcom |
⊢ ( 𝐴 ∈ ℂ → ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
57 |
56
|
3imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |