| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 0 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 0 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑘 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 · 𝑗 ) = ( 𝑀 · ( 𝑘 + 1 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑁 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| 19 |
17 18
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
| 21 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
| 22 |
21
|
mul01d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 · 0 ) = 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( 𝐴 ↑ 0 ) ) |
| 24 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 25 |
23 24
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = 1 ) |
| 26 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 27 |
|
exp0 |
⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) |
| 29 |
25 28
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) |
| 30 |
|
oveq1 |
⊢ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 31 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 33 |
|
adddi |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) |
| 34 |
32 33
|
mp3an3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) |
| 35 |
|
mulrid |
⊢ ( 𝑀 ∈ ℂ → ( 𝑀 · 1 ) = 𝑀 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · 1 ) = 𝑀 ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 38 |
34 37
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 39 |
21 31 38
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 40 |
39
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) ) |
| 42 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 43 |
|
nn0mulcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) |
| 44 |
43
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
| 46 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 · 𝑘 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 48 |
41 47
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 49 |
|
expp1 |
⊢ ( ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 50 |
26 49
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 51 |
48 50
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 52 |
30 51
|
imbitrrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 53 |
52
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 54 |
53
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 55 |
5 10 15 20 29 54
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 56 |
55
|
expdcom |
⊢ ( 𝐴 ∈ ℂ → ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
| 57 |
56
|
3imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |