Metamath Proof Explorer


Theorem expmuld

Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
expaddd.2 ( 𝜑𝑀 ∈ ℕ0 )
Assertion expmuld ( 𝜑 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴𝑀 ) ↑ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 expaddd.2 ( 𝜑𝑀 ∈ ℕ0 )
4 expmul ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴𝑀 ) ↑ 𝑁 ) )
5 1 3 2 4 syl3anc ( 𝜑 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴𝑀 ) ↑ 𝑁 ) )