Metamath Proof Explorer
		
		
		
		Description:  An integer power is nonzero if its base is nonzero.  (Contributed by NM, 2-Aug-2006)  (Revised by Mario Carneiro, 4-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | expne0i | ⊢  ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  ≠  0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expclzlem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 2 |  | eldifsni | ⊢ ( ( 𝐴 ↑ 𝑁 )  ∈  ( ℂ  ∖  { 0 } )  →  ( 𝐴 ↑ 𝑁 )  ≠  0 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  ≠  0 ) |