Metamath Proof Explorer


Theorem expne0i

Description: Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expne0i ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 expclzlem ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ( ℂ ∖ { 0 } ) )
2 eldifsni ( ( 𝐴𝑁 ) ∈ ( ℂ ∖ { 0 } ) → ( 𝐴𝑁 ) ≠ 0 )
3 1 2 syl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ≠ 0 )