| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  𝑁  ≠  0 ) | 
						
							| 4 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 6 | 5 | negeq0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  =  0  ↔  - 𝑁  =  0 ) ) | 
						
							| 7 | 6 | necon3abid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ≠  0  ↔  ¬  - 𝑁  =  0 ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ¬  - 𝑁  =  0 ) | 
						
							| 9 | 8 | iffalsed | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  if ( - 𝑁  =  0 ,  1 ,  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) )  =  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) | 
						
							| 10 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 12 |  | nn0nlt0 | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  𝑁  <  0 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ¬  𝑁  <  0 ) | 
						
							| 14 | 11 | nn0red | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 15 | 14 | lt0neg1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  <  0  ↔  0  <  - 𝑁 ) ) | 
						
							| 16 | 13 15 | mtbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ¬  0  <  - 𝑁 ) | 
						
							| 17 | 16 | iffalsed | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) )  =  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) | 
						
							| 18 | 5 | negnegd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  - - 𝑁  =  𝑁 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) )  =  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 21 | 9 17 20 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  if ( - 𝑁  =  0 ,  1 ,  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) )  =  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 22 |  | nnnegz | ⊢ ( 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℤ ) | 
						
							| 23 |  | expval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝐴 ↑ - 𝑁 )  =  if ( - 𝑁  =  0 ,  1 ,  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) | 
						
							| 24 | 22 23 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ - 𝑁 )  =  if ( - 𝑁  =  0 ,  1 ,  if ( 0  <  - 𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) | 
						
							| 25 |  | expnnval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ 𝑁 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 1  /  ( 𝐴 ↑ 𝑁 ) )  =  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 27 | 21 24 26 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ - 𝑁 )  =  ( 1  /  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 28 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 29 | 28 | eqcomi | ⊢ 1  =  ( 1  /  1 ) | 
						
							| 30 |  | negeq | ⊢ ( 𝑁  =  0  →  - 𝑁  =  - 0 ) | 
						
							| 31 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 32 | 30 31 | eqtrdi | ⊢ ( 𝑁  =  0  →  - 𝑁  =  0 ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑁  =  0  →  ( 𝐴 ↑ - 𝑁 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 34 |  | exp0 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 35 | 33 34 | sylan9eqr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  =  0 )  →  ( 𝐴 ↑ - 𝑁 )  =  1 ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝐴 ↑ 𝑁 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 37 | 36 34 | sylan9eqr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  =  0 )  →  ( 𝐴 ↑ 𝑁 )  =  1 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  =  0 )  →  ( 1  /  ( 𝐴 ↑ 𝑁 ) )  =  ( 1  /  1 ) ) | 
						
							| 39 | 29 35 38 | 3eqtr4a | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  =  0 )  →  ( 𝐴 ↑ - 𝑁 )  =  ( 1  /  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 40 | 27 39 | jaodan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  →  ( 𝐴 ↑ - 𝑁 )  =  ( 1  /  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 41 | 1 40 | sylan2b | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ - 𝑁 )  =  ( 1  /  ( 𝐴 ↑ 𝑁 ) ) ) |