Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
4 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
6 |
5
|
negeq0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
7 |
6
|
necon3abid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
8 |
3 7
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ - 𝑁 = 0 ) |
9 |
8
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) = if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) |
10 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
12 |
|
nn0nlt0 |
⊢ ( 𝑁 ∈ ℕ0 → ¬ 𝑁 < 0 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑁 < 0 ) |
14 |
11
|
nn0red |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
15 |
14
|
lt0neg1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 0 ↔ 0 < - 𝑁 ) ) |
16 |
13 15
|
mtbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ 0 < - 𝑁 ) |
17 |
16
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) |
18 |
5
|
negnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → - - 𝑁 = 𝑁 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
21 |
9 17 20
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
22 |
|
nnnegz |
⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
23 |
|
expval |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
24 |
22 23
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) = if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
25 |
|
expnnval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / ( 𝐴 ↑ 𝑁 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
27 |
21 24 26
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
28 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
29 |
28
|
eqcomi |
⊢ 1 = ( 1 / 1 ) |
30 |
|
negeq |
⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) |
31 |
|
neg0 |
⊢ - 0 = 0 |
32 |
30 31
|
eqtrdi |
⊢ ( 𝑁 = 0 → - 𝑁 = 0 ) |
33 |
32
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑ - 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
34 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
35 |
33 34
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ - 𝑁 ) = 1 ) |
36 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
37 |
36 34
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 𝑁 ) = 1 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 1 / ( 𝐴 ↑ 𝑁 ) ) = ( 1 / 1 ) ) |
39 |
29 35 38
|
3eqtr4a |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
40 |
27 39
|
jaodan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
41 |
1 40
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |