Description: Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negneg | ⊢ ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 ) | |
2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
4 | expneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) | |
5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
6 | 3 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |