Metamath Proof Explorer


Theorem expneg2

Description: Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expneg2 ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 negneg ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 )
2 1 3ad2ant2 ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 )
3 2 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 𝐴𝑁 ) )
4 expneg ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) )
5 4 3adant2 ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - - 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) )
6 3 5 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) )