Metamath Proof Explorer


Theorem expnegd

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
sqrecd.1 ( 𝜑𝐴 ≠ 0 )
expclzd.3 ( 𝜑𝑁 ∈ ℤ )
Assertion expnegd ( 𝜑 → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 sqrecd.1 ( 𝜑𝐴 ≠ 0 )
3 expclzd.3 ( 𝜑𝑁 ∈ ℤ )
4 expnegz ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴𝑁 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴𝑁 ) ) )