Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
3 |
1 2
|
rereccld |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
4 |
|
expnbnd |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ) |
5 |
3 4
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ) |
6 |
|
rpregt0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
8 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
9 |
|
reexpcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
12 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
13 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
15 |
|
0lt1 |
⊢ 0 < 1 |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
1re |
⊢ 1 ∈ ℝ |
18 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐵 ) → 0 < 𝐵 ) ) |
19 |
16 17 18
|
mp3an12 |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐵 ) → 0 < 𝐵 ) ) |
20 |
15 19
|
mpani |
⊢ ( 𝐵 ∈ ℝ → ( 1 < 𝐵 → 0 < 𝐵 ) ) |
21 |
20
|
imp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → 0 < 𝐵 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝐵 ) |
23 |
|
expgt0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵 ) → 0 < ( 𝐵 ↑ 𝑘 ) ) |
24 |
12 14 22 23
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝐵 ↑ 𝑘 ) ) |
25 |
11 24
|
jca |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) |
26 |
25
|
3adantl1 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) |
27 |
|
ltrec1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
28 |
7 26 27
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
29 |
28
|
rexbidva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ∃ 𝑘 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
30 |
5 29
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |