| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expnlbnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  ∃ 𝑗  ∈  ℕ ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴 ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  1  <  𝐵 ) | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 |  | ltle | ⊢ ( ( 1  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1  <  𝐵  →  1  ≤  𝐵 ) ) | 
						
							| 6 | 4 2 5 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  <  𝐵  →  1  ≤  𝐵 ) ) | 
						
							| 7 | 3 6 | mpd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  1  ≤  𝐵 ) | 
						
							| 8 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 9 |  | leexp2a | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  ≤  𝐵  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐵 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 10 | 2 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 11 |  | 0red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  ∈  ℝ ) | 
						
							| 12 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  1  ∈  ℝ ) | 
						
							| 13 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  <  1 ) | 
						
							| 15 | 11 12 2 14 3 | lttrd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  <  𝐵 ) | 
						
							| 16 | 2 15 | elrpd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐵  ∈  ℝ+ ) | 
						
							| 17 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 19 |  | rpexpcl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝑗  ∈  ℤ )  →  ( 𝐵 ↑ 𝑗 )  ∈  ℝ+ ) | 
						
							| 20 | 16 18 19 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 ↑ 𝑗 )  ∈  ℝ+ ) | 
						
							| 21 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝑘  ∈  ℤ ) | 
						
							| 22 | 21 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 23 |  | rpexpcl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 24 | 16 22 23 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 25 | 20 24 | lerecd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑘 )  ↔  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ≤  ( 1  /  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 26 | 10 25 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ≤  ( 1  /  ( 𝐵 ↑ 𝑗 ) ) ) | 
						
							| 27 | 24 | rprecred | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 28 | 20 | rprecred | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  ∈  ℝ ) | 
						
							| 29 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 30 | 29 | rpred | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 31 |  | lelttr | ⊢ ( ( ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ  ∧  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ≤  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  ∧  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴 )  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 32 | 27 28 30 31 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( 1  /  ( 𝐵 ↑ 𝑘 ) )  ≤  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  ∧  ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴 )  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 33 | 26 32 | mpand | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 34 | 33 | anassrs | ⊢ ( ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴  →  ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 35 | 34 | ralrimdva | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 36 | 35 | reximdva | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  ( ∃ 𝑗  ∈  ℕ ( 1  /  ( 𝐵 ↑ 𝑗 ) )  <  𝐴  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) ) | 
						
							| 37 | 1 36 | mpd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 1  /  ( 𝐵 ↑ 𝑘 ) )  <  𝐴 ) |