Step |
Hyp |
Ref |
Expression |
1 |
|
expnlbnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑗 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ ℝ ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 < 𝐵 ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 < 𝐵 → 1 ≤ 𝐵 ) ) |
6 |
4 2 5
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 < 𝐵 → 1 ≤ 𝐵 ) ) |
7 |
3 6
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ≤ 𝐵 ) |
8 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
9 |
|
leexp2a |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ≤ 𝐵 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ) |
10 |
2 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ) |
11 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ∈ ℝ ) |
12 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ∈ ℝ ) |
13 |
|
0lt1 |
⊢ 0 < 1 |
14 |
13
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < 1 ) |
15 |
11 12 2 14 3
|
lttrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < 𝐵 ) |
16 |
2 15
|
elrpd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ ℝ+ ) |
17 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
18 |
17
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℤ ) |
19 |
|
rpexpcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑗 ∈ ℤ ) → ( 𝐵 ↑ 𝑗 ) ∈ ℝ+ ) |
20 |
16 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑗 ) ∈ ℝ+ ) |
21 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) |
22 |
21
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ℤ ) |
23 |
|
rpexpcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ+ ) |
24 |
16 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ+ ) |
25 |
20 24
|
lerecd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ) ) |
26 |
10 25
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ) |
27 |
24
|
rprecred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) ∈ ℝ ) |
28 |
20
|
rprecred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∈ ℝ ) |
29 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ ℝ+ ) |
30 |
29
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ ℝ ) |
31 |
|
lelttr |
⊢ ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
32 |
27 28 30 31
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
33 |
26 32
|
mpand |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
34 |
33
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
35 |
34
|
ralrimdva |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑗 ∈ ℕ ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
36 |
35
|
reximdva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
37 |
1 36
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |