Step |
Hyp |
Ref |
Expression |
1 |
|
elznn |
⊢ ( 𝐵 ∈ ℤ ↔ ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) ) ) |
2 |
|
2a1 |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) |
3 |
2
|
a1d |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
4 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
6 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
8 |
|
simp1 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → - 𝐵 ∈ ℕ0 ) |
9 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
10 |
5 7 8 9
|
syl3anc |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
11 |
10
|
breq2d |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) |
12 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
13 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
15 |
14
|
ancoms |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
16 |
12
|
adantl |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
17 |
|
nn0z |
⊢ ( - 𝐵 ∈ ℕ0 → - 𝐵 ∈ ℤ ) |
18 |
17
|
adantr |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → - 𝐵 ∈ ℤ ) |
19 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
20 |
19
|
adantl |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 0 < 𝐴 ) |
21 |
|
expgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ - 𝐵 ) ) |
22 |
16 18 20 21
|
syl3anc |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → 0 < ( 𝐴 ↑ - 𝐵 ) ) |
23 |
15 22
|
jca |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) ) |
24 |
23
|
3adant2 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) ) |
25 |
|
reclt1 |
⊢ ( ( ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ - 𝐵 ) ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 ↔ 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) ) |
27 |
12
|
3ad2ant3 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
28 |
|
nnge1 |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ≤ 𝐴 ) |
30 |
27 8 29
|
expge1d |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ≤ ( 𝐴 ↑ - 𝐵 ) ) |
31 |
|
1red |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → 1 ∈ ℝ ) |
32 |
15
|
3adant2 |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ↑ - 𝐵 ) ∈ ℝ ) |
33 |
31 32
|
lenltd |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 ≤ ( 𝐴 ↑ - 𝐵 ) ↔ ¬ ( 𝐴 ↑ - 𝐵 ) < 1 ) ) |
34 |
|
pm2.21 |
⊢ ( ¬ ( 𝐴 ↑ - 𝐵 ) < 1 → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) |
35 |
33 34
|
syl6bi |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 ≤ ( 𝐴 ↑ - 𝐵 ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) ) |
36 |
30 35
|
mpd |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 ↑ - 𝐵 ) < 1 → 𝐵 ∈ ℕ ) ) |
37 |
26 36
|
sylbird |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 1 / ( 𝐴 ↑ - 𝐵 ) ) → 𝐵 ∈ ℕ ) ) |
38 |
11 37
|
sylbid |
⊢ ( ( - 𝐵 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) |
39 |
38
|
3exp |
⊢ ( - 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
40 |
3 39
|
jaoi |
⊢ ( ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) ) |
41 |
40
|
impcom |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ ∨ - 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) |
42 |
1 41
|
sylbi |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ∈ ℕ → ( 1 < ( 𝐴 ↑ 𝐵 ) → 𝐵 ∈ ℕ ) ) ) |
43 |
42
|
3imp21 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |