Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℕ ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐴 ∈ ℕ ) |
4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℤ ) |
5 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 1 < ( 𝐴 ↑ 𝐵 ) ) |
6 |
|
expnngt1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |
8 |
2
|
nnred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
10 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
11 |
|
eluz2gt1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 1 < 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 1 < 𝐴 ) |
14 |
|
expgt1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝐵 ) ) |
15 |
9 10 13 14
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 1 < ( 𝐴 ↑ 𝐵 ) ) |
16 |
7 15
|
impbida |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) ↔ 𝐵 ∈ ℕ ) ) |