Metamath Proof Explorer


Theorem expnnval

Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expnnval ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
2 expval ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) )
3 1 2 sylan2 ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) )
4 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
5 4 neneqd ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 )
6 5 iffalsed ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) )
7 nngt0 ( 𝑁 ∈ ℕ → 0 < 𝑁 )
8 7 iftrued ( 𝑁 ∈ ℕ → if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) )
9 6 8 eqtrd ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) )
10 9 adantl ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) )
11 3 10 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) )