Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
2 |
|
expval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
4 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
5 |
4
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
6 |
5
|
iffalsed |
⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) |
7 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
8 |
7
|
iftrued |
⊢ ( 𝑁 ∈ ℕ → if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
11 |
3 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |