Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
2 3
|
eleq2s |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
6 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
7 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) = 𝐴 ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) = 𝐴 ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
10 |
5 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
11 |
|
expnnval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
12 |
6 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
13 |
|
expnnval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
15 |
10 12 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
16 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
17 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
18 |
16 17
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( 1 · 𝐴 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 1 ) = ( 1 · 𝐴 ) ) |
20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
22 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝑁 + 1 ) = 1 ) |
24 |
23
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( 𝐴 ↑ 1 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
26 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
27 |
25 26
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 𝑁 ) = 1 ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
29 |
19 24 28
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
30 |
15 29
|
jaodan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
31 |
1 30
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |