Metamath Proof Explorer


Theorem expp1d

Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of Gleason p. 134. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion expp1d ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 expp1 ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )