| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | expaddz | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℤ  ∧  1  ∈  ℤ ) )  →  ( 𝐴 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐴 ↑ 𝑁 )  ·  ( 𝐴 ↑ 1 ) ) ) | 
						
							| 3 | 1 2 | mpanr2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐴 ↑ 𝑁 )  ·  ( 𝐴 ↑ 1 ) ) ) | 
						
							| 4 | 3 | 3impa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐴 ↑ 𝑁 )  ·  ( 𝐴 ↑ 1 ) ) ) | 
						
							| 5 |  | exp1 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( ( 𝐴 ↑ 𝑁 )  ·  ( 𝐴 ↑ 1 ) )  =  ( ( 𝐴 ↑ 𝑁 )  ·  𝐴 ) ) | 
						
							| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐴 ↑ 𝑁 )  ·  𝐴 ) ) |