Metamath Proof Explorer


Theorem expp1zd

Description: Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
sqrecd.1 ( 𝜑𝐴 ≠ 0 )
expclzd.3 ( 𝜑𝑁 ∈ ℤ )
Assertion expp1zd ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 sqrecd.1 ( 𝜑𝐴 ≠ 0 )
3 expclzd.3 ( 𝜑𝑁 ∈ ℤ )
4 expp1z ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴𝑁 ) · 𝐴 ) )