Step |
Hyp |
Ref |
Expression |
1 |
|
elss2prb |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) ) |
2 |
|
eleq1 |
⊢ ( 𝑝 = { 𝑣 , 𝑤 } → ( 𝑝 ∈ 𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝 ∈ 𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
4 |
3
|
biimpcd |
⊢ ( 𝑝 ∈ 𝑋 → ( ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
5 |
4
|
reximdv |
⊢ ( 𝑝 ∈ 𝑋 → ( ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
6 |
5
|
reximdv |
⊢ ( 𝑝 ∈ 𝑋 → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
7 |
6
|
com12 |
⊢ ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
8 |
1 7
|
sylbi |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } → ( 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
9 |
8
|
rexlimiv |
⊢ ( ∃ 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) |