Metamath Proof Explorer


Theorem exprelprel

Description: If there is an element of the set of subsets with two elements in a set, an unordered pair of sets is in the set. (Contributed by Alexander van der Vekens, 12-Jul-2018)

Ref Expression
Assertion exprelprel ( ∃ 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } 𝑝𝑋 → ∃ 𝑣𝑉𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 elss2prb ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ∃ 𝑣𝑉𝑤𝑉 ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) )
2 eleq1 ( 𝑝 = { 𝑣 , 𝑤 } → ( 𝑝𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) )
3 2 adantl ( ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) )
4 3 biimpcd ( 𝑝𝑋 → ( ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) → { 𝑣 , 𝑤 } ∈ 𝑋 ) )
5 4 reximdv ( 𝑝𝑋 → ( ∃ 𝑤𝑉 ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) )
6 5 reximdv ( 𝑝𝑋 → ( ∃ 𝑣𝑉𝑤𝑉 ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑣𝑉𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) )
7 6 com12 ( ∃ 𝑣𝑉𝑤𝑉 ( 𝑣𝑤𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝𝑋 → ∃ 𝑣𝑉𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) )
8 1 7 sylbi ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } → ( 𝑝𝑋 → ∃ 𝑣𝑉𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) )
9 8 rexlimiv ( ∃ 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } 𝑝𝑋 → ∃ 𝑣𝑉𝑤𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 )