Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
2 |
|
eleq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 1 ∈ ( ℤ≥ ‘ 2 ) ) ) |
3 |
2
|
imbi1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ) ) |
4 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) ) |
5 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑦 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) |
9 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑧 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
13 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
17 |
|
breq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑁 ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑥 = 𝑁 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) ) |
20 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
21 |
|
uz2m1nn |
⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ( 1 − 1 ) ∈ ℕ ) |
22 |
20 21
|
eqeltrrid |
⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℕ ) |
23 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
24 |
23
|
pm2.21i |
⊢ ( 0 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
25 |
22 24
|
syl |
⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
26 |
|
prmz |
⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℤ ) |
27 |
|
iddvds |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∥ 𝑥 ) |
28 |
26 27
|
syl |
⊢ ( 𝑥 ∈ ℙ → 𝑥 ∥ 𝑥 ) |
29 |
|
breq1 |
⊢ ( 𝑝 = 𝑥 → ( 𝑝 ∥ 𝑥 ↔ 𝑥 ∥ 𝑥 ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ∥ 𝑥 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
31 |
28 30
|
mpdan |
⊢ ( 𝑥 ∈ ℙ → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
32 |
31
|
a1d |
⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ) |
33 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) |
34 |
|
eluzelz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℤ ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∈ ℤ ) |
36 |
|
eluzelz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) |
37 |
36
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑧 ∈ ℤ ) |
38 |
|
dvdsmul1 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑦 ∥ ( 𝑦 · 𝑧 ) ) |
39 |
35 37 38
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∥ ( 𝑦 · 𝑧 ) ) |
40 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
42 |
35 37
|
zmulcld |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑦 · 𝑧 ) ∈ ℤ ) |
43 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ( 𝑦 · 𝑧 ) ∈ ℤ ) → ( ( 𝑝 ∥ 𝑦 ∧ 𝑦 ∥ ( 𝑦 · 𝑧 ) ) → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
44 |
41 35 42 43
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑦 ∧ 𝑦 ∥ ( 𝑦 · 𝑧 ) ) → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
45 |
39 44
|
mpan2d |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑦 → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
46 |
45
|
reximdva |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
47 |
33 46
|
embantd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
48 |
47
|
a1dd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) → ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
49 |
48
|
adantrd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ∧ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) → ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
50 |
3 7 11 15 19 25 32 49
|
prmind |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) |
51 |
1 50
|
mpcom |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |