Metamath Proof Explorer
Description: Exponent subtraction law for nonnegative integer exponentiation.
(Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
sqrecd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
|
expclzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
expsubd.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
Assertion |
expsubd |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
sqrecd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
expclzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
expsubd.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
expsub |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
6 |
1 2 4 3 5
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |