| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → 𝑦 = 𝑁 ) |
| 2 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 𝑦 = 0 ↔ 𝑁 = 0 ) ) |
| 3 |
1
|
breq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 0 < 𝑦 ↔ 0 < 𝑁 ) ) |
| 4 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → 𝑥 = 𝐴 ) |
| 5 |
4
|
sneqd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → { 𝑥 } = { 𝐴 } ) |
| 6 |
5
|
xpeq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( ℕ × { 𝑥 } ) = ( ℕ × { 𝐴 } ) ) |
| 7 |
6
|
seqeq3d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → seq 1 ( · , ( ℕ × { 𝑥 } ) ) = seq 1 ( · , ( ℕ × { 𝐴 } ) ) ) |
| 8 |
7 1
|
fveq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 9 |
1
|
negeqd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → - 𝑦 = - 𝑁 ) |
| 10 |
7 9
|
fveq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) |
| 12 |
3 8 11
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) |
| 13 |
2 12
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 14 |
|
df-exp |
⊢ ↑ = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℤ ↦ if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) ) |
| 15 |
|
1ex |
⊢ 1 ∈ V |
| 16 |
|
fvex |
⊢ ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ∈ V |
| 17 |
|
ovex |
⊢ ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ∈ V |
| 18 |
16 17
|
ifex |
⊢ if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ∈ V |
| 19 |
15 18
|
ifex |
⊢ if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ∈ V |
| 20 |
13 14 19
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |