Metamath Proof Explorer


Theorem exrot4

Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995)

Ref Expression
Assertion exrot4 ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 excom13 ( ∃ 𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑤𝑧𝑦 𝜑 )
2 1 exbii ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑥𝑤𝑧𝑦 𝜑 )
3 excom13 ( ∃ 𝑥𝑤𝑧𝑦 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 𝜑 )
4 2 3 bitri ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 𝜑 )