Metamath Proof Explorer


Theorem exsimpl

Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion exsimpl ( ∃ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 eximi ( ∃ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 𝜑 )