Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | exsnrex | ⊢ ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ∈ 𝑀 𝑀 = { 𝑥 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
2 | eleq2 | ⊢ ( 𝑀 = { 𝑥 } → ( 𝑥 ∈ 𝑀 ↔ 𝑥 ∈ { 𝑥 } ) ) | |
3 | 1 2 | mpbiri | ⊢ ( 𝑀 = { 𝑥 } → 𝑥 ∈ 𝑀 ) |
4 | 3 | pm4.71ri | ⊢ ( 𝑀 = { 𝑥 } ↔ ( 𝑥 ∈ 𝑀 ∧ 𝑀 = { 𝑥 } ) ) |
5 | 4 | exbii | ⊢ ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑀 ∧ 𝑀 = { 𝑥 } ) ) |
6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑀 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑀 ∧ 𝑀 = { 𝑥 } ) ) | |
7 | 5 6 | bitr4i | ⊢ ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ∈ 𝑀 𝑀 = { 𝑥 } ) |