Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
2 |
1
|
neeq1i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ≠ ∅ ) |
3 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
4 |
|
n0 |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
5 |
2 3 4
|
3bitr3i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
6
|
snss |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
8 |
|
ssab2 |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
9 |
|
sstr2 |
⊢ ( { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 → { 𝑧 } ⊆ 𝐴 ) ) |
10 |
8 9
|
mpi |
⊢ ( { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑧 } ⊆ 𝐴 ) |
11 |
7 10
|
sylbi |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑧 } ⊆ 𝐴 ) |
12 |
|
simpr |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → [ 𝑧 / 𝑥 ] 𝜑 ) |
13 |
|
equsb1v |
⊢ [ 𝑧 / 𝑥 ] 𝑥 = 𝑧 |
14 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) |
15 |
14
|
sbbii |
⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ↔ [ 𝑧 / 𝑥 ] 𝑥 = 𝑧 ) |
16 |
13 15
|
mpbir |
⊢ [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } |
17 |
12 16
|
jctil |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
18 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
19 |
|
sban |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
20 |
18 19
|
bitri |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
21 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } |
22 |
21
|
eleq2i |
⊢ ( 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } ) |
23 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } ↔ [ 𝑧 / 𝑥 ] ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) ) |
24 |
|
sban |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
25 |
22 23 24
|
3bitri |
⊢ ( 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
26 |
17 20 25
|
3imtr4i |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ) |
27 |
26
|
ne0d |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ≠ ∅ ) |
28 |
|
rabn0 |
⊢ ( { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) |
29 |
27 28
|
sylib |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) |
30 |
|
snex |
⊢ { 𝑧 } ∈ V |
31 |
|
sseq1 |
⊢ ( 𝑦 = { 𝑧 } → ( 𝑦 ⊆ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) ) |
32 |
|
rexeq |
⊢ ( 𝑦 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝑦 𝜑 ↔ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑦 = { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ↔ ( { 𝑧 } ⊆ 𝐴 ∧ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) ) ) |
34 |
30 33
|
spcev |
⊢ ( ( { 𝑧 } ⊆ 𝐴 ∧ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
35 |
11 29 34
|
syl2anc |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
36 |
35
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
37 |
5 36
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |