| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 2 | 1 | neeq1i | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ≠  ∅  ↔  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ≠  ∅ ) | 
						
							| 3 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 4 |  | n0 | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } ) | 
						
							| 5 | 2 3 4 | 3bitr3i | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑧 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } ) | 
						
							| 6 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 7 | 6 | snss | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ↔  { 𝑧 }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } ) | 
						
							| 8 |  | ssab2 | ⊢ { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  𝐴 | 
						
							| 9 |  | sstr2 | ⊢ ( { 𝑧 }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  𝐴  →  { 𝑧 }  ⊆  𝐴 ) ) | 
						
							| 10 | 8 9 | mpi | ⊢ ( { 𝑧 }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 11 | 7 10 | sylbi | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 12 |  | simpr | ⊢ ( ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 13 |  | equsb1v | ⊢ [ 𝑧  /  𝑥 ] 𝑥  =  𝑧 | 
						
							| 14 |  | velsn | ⊢ ( 𝑥  ∈  { 𝑧 }  ↔  𝑥  =  𝑧 ) | 
						
							| 15 | 14 | sbbii | ⊢ ( [ 𝑧  /  𝑥 ] 𝑥  ∈  { 𝑧 }  ↔  [ 𝑧  /  𝑥 ] 𝑥  =  𝑧 ) | 
						
							| 16 | 13 15 | mpbir | ⊢ [ 𝑧  /  𝑥 ] 𝑥  ∈  { 𝑧 } | 
						
							| 17 | 12 16 | jctil | ⊢ ( ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  →  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  { 𝑧 }  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 18 |  | df-clab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ↔  [ 𝑧  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 19 |  | sban | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ↔  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 |  | df-rab | ⊢ { 𝑥  ∈  { 𝑧 }  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  { 𝑧 }  ∧  𝜑 ) } | 
						
							| 22 | 21 | eleq2i | ⊢ ( 𝑧  ∈  { 𝑥  ∈  { 𝑧 }  ∣  𝜑 }  ↔  𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  { 𝑧 }  ∧  𝜑 ) } ) | 
						
							| 23 |  | df-clab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  { 𝑧 }  ∧  𝜑 ) }  ↔  [ 𝑧  /  𝑥 ] ( 𝑥  ∈  { 𝑧 }  ∧  𝜑 ) ) | 
						
							| 24 |  | sban | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝑥  ∈  { 𝑧 }  ∧  𝜑 )  ↔  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  { 𝑧 }  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 25 | 22 23 24 | 3bitri | ⊢ ( 𝑧  ∈  { 𝑥  ∈  { 𝑧 }  ∣  𝜑 }  ↔  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  { 𝑧 }  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 26 | 17 20 25 | 3imtr4i | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  𝑧  ∈  { 𝑥  ∈  { 𝑧 }  ∣  𝜑 } ) | 
						
							| 27 | 26 | ne0d | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  { 𝑥  ∈  { 𝑧 }  ∣  𝜑 }  ≠  ∅ ) | 
						
							| 28 |  | rabn0 | ⊢ ( { 𝑥  ∈  { 𝑧 }  ∣  𝜑 }  ≠  ∅  ↔  ∃ 𝑥  ∈  { 𝑧 } 𝜑 ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  ∃ 𝑥  ∈  { 𝑧 } 𝜑 ) | 
						
							| 30 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 31 |  | sseq1 | ⊢ ( 𝑦  =  { 𝑧 }  →  ( 𝑦  ⊆  𝐴  ↔  { 𝑧 }  ⊆  𝐴 ) ) | 
						
							| 32 |  | rexeq | ⊢ ( 𝑦  =  { 𝑧 }  →  ( ∃ 𝑥  ∈  𝑦 𝜑  ↔  ∃ 𝑥  ∈  { 𝑧 } 𝜑 ) ) | 
						
							| 33 | 31 32 | anbi12d | ⊢ ( 𝑦  =  { 𝑧 }  →  ( ( 𝑦  ⊆  𝐴  ∧  ∃ 𝑥  ∈  𝑦 𝜑 )  ↔  ( { 𝑧 }  ⊆  𝐴  ∧  ∃ 𝑥  ∈  { 𝑧 } 𝜑 ) ) ) | 
						
							| 34 | 30 33 | spcev | ⊢ ( ( { 𝑧 }  ⊆  𝐴  ∧  ∃ 𝑥  ∈  { 𝑧 } 𝜑 )  →  ∃ 𝑦 ( 𝑦  ⊆  𝐴  ∧  ∃ 𝑥  ∈  𝑦 𝜑 ) ) | 
						
							| 35 | 11 29 34 | syl2anc | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  ∃ 𝑦 ( 𝑦  ⊆  𝐴  ∧  ∃ 𝑥  ∈  𝑦 𝜑 ) ) | 
						
							| 36 | 35 | exlimiv | ⊢ ( ∃ 𝑧 𝑧  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  →  ∃ 𝑦 ( 𝑦  ⊆  𝐴  ∧  ∃ 𝑥  ∈  𝑦 𝜑 ) ) | 
						
							| 37 | 5 36 | sylbi | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  →  ∃ 𝑦 ( 𝑦  ⊆  𝐴  ∧  ∃ 𝑥  ∈  𝑦 𝜑 ) ) |