Step |
Hyp |
Ref |
Expression |
1 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → Fun 𝐹 ) |
2 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → ran 𝐹 ⊆ ∅ ) |
3 |
|
ss0 |
⊢ ( ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅ ) |
4 |
2 3
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → ran 𝐹 = ∅ ) |
5 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
6 |
4 5
|
sylibr |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → dom 𝐹 = ∅ ) |
7 |
|
df-fn |
⊢ ( 𝐹 Fn ∅ ↔ ( Fun 𝐹 ∧ dom 𝐹 = ∅ ) ) |
8 |
1 6 7
|
sylanbrc |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → 𝐹 Fn ∅ ) |
9 |
|
fn0 |
⊢ ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ ) |
10 |
8 9
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → 𝐹 = ∅ ) |
11 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → dom 𝐹 = 𝐴 ) |
12 |
11 6
|
eqtr3d |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → 𝐴 = ∅ ) |
13 |
10 12
|
jca |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ → ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |
14 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
15 |
|
feq1 |
⊢ ( 𝐹 = ∅ → ( 𝐹 : 𝐴 ⟶ ∅ ↔ ∅ : 𝐴 ⟶ ∅ ) ) |
16 |
|
feq2 |
⊢ ( 𝐴 = ∅ → ( ∅ : 𝐴 ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) ) |
17 |
15 16
|
sylan9bb |
⊢ ( ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) → ( 𝐹 : 𝐴 ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) ) |
18 |
14 17
|
mpbiri |
⊢ ( ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) → 𝐹 : 𝐴 ⟶ ∅ ) |
19 |
13 18
|
impbii |
⊢ ( 𝐹 : 𝐴 ⟶ ∅ ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |