Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | f002.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
Assertion | f002 | ⊢ ( 𝜑 → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f002.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
2 | feq3 | ⊢ ( 𝐵 = ∅ → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐴 ⟶ ∅ ) ) | |
3 | f00 | ⊢ ( 𝐹 : 𝐴 ⟶ ∅ ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) | |
4 | 3 | simprbi | ⊢ ( 𝐹 : 𝐴 ⟶ ∅ → 𝐴 = ∅ ) |
5 | 2 4 | syl6bi | ⊢ ( 𝐵 = ∅ → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 = ∅ ) ) |
6 | 1 5 | syl5com | ⊢ ( 𝜑 → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |