Metamath Proof Explorer


Theorem f0bi

Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018)

Ref Expression
Assertion f0bi ( 𝐹 : ∅ ⟶ 𝑋𝐹 = ∅ )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐹 : ∅ ⟶ 𝑋𝐹 Fn ∅ )
2 fn0 ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ )
3 1 2 sylib ( 𝐹 : ∅ ⟶ 𝑋𝐹 = ∅ )
4 f0 ∅ : ∅ ⟶ 𝑋
5 feq1 ( 𝐹 = ∅ → ( 𝐹 : ∅ ⟶ 𝑋 ↔ ∅ : ∅ ⟶ 𝑋 ) )
6 4 5 mpbiri ( 𝐹 = ∅ → 𝐹 : ∅ ⟶ 𝑋 )
7 3 6 impbii ( 𝐹 : ∅ ⟶ 𝑋𝐹 = ∅ )