Description: Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f0cl.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
| f0cl.2 | ⊢ ∅ ∈ 𝐵 | ||
| Assertion | f0cli | ⊢ ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f0cl.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
| 2 | f0cl.2 | ⊢ ∅ ∈ 𝐵 | |
| 3 | 1 | ffvelcdmi | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) | 
| 4 | 1 | fdmi | ⊢ dom 𝐹 = 𝐴 | 
| 5 | 4 | eleq2i | ⊢ ( 𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴 ) | 
| 6 | ndmfv | ⊢ ( ¬ 𝐶 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐶 ) = ∅ ) | |
| 7 | 6 2 | eqeltrdi | ⊢ ( ¬ 𝐶 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) | 
| 8 | 5 7 | sylnbir | ⊢ ( ¬ 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) | 
| 9 | 3 8 | pm2.61i | ⊢ ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 |