Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f0cl.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
f0cl.2 | ⊢ ∅ ∈ 𝐵 | ||
Assertion | f0cli | ⊢ ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0cl.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
2 | f0cl.2 | ⊢ ∅ ∈ 𝐵 | |
3 | 1 | ffvelrni | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) |
4 | 1 | fdmi | ⊢ dom 𝐹 = 𝐴 |
5 | 4 | eleq2i | ⊢ ( 𝐶 ∈ dom 𝐹 ↔ 𝐶 ∈ 𝐴 ) |
6 | ndmfv | ⊢ ( ¬ 𝐶 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐶 ) = ∅ ) | |
7 | 6 2 | eqeltrdi | ⊢ ( ¬ 𝐶 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) |
8 | 5 7 | sylnbir | ⊢ ( ¬ 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 ) |
9 | 3 8 | pm2.61i | ⊢ ( 𝐹 ‘ 𝐶 ) ∈ 𝐵 |