Step |
Hyp |
Ref |
Expression |
1 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : ∅ ⟶ 𝑌 ) ) |
2 |
|
f0bi |
⊢ ( 𝐹 : ∅ ⟶ 𝑌 ↔ 𝐹 = ∅ ) |
3 |
2
|
biimpi |
⊢ ( 𝐹 : ∅ ⟶ 𝑌 → 𝐹 = ∅ ) |
4 |
1 3
|
syl6bi |
⊢ ( 𝑋 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 = ∅ ) ) |
5 |
4
|
com12 |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ → 𝐹 = ∅ ) ) |
6 |
|
feq1 |
⊢ ( 𝐹 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ ∅ : 𝑋 ⟶ 𝑌 ) ) |
7 |
|
fdm |
⊢ ( ∅ : 𝑋 ⟶ 𝑌 → dom ∅ = 𝑋 ) |
8 |
|
dm0 |
⊢ dom ∅ = ∅ |
9 |
7 8
|
eqtr3di |
⊢ ( ∅ : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) |
10 |
6 9
|
syl6bi |
⊢ ( 𝐹 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) ) |
11 |
10
|
com12 |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝐹 = ∅ → 𝑋 = ∅ ) ) |
12 |
5 11
|
impbid |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ ↔ 𝐹 = ∅ ) ) |