Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
⊢ ( 𝐸 : 𝑋 ⟶ 𝑌 → dom 𝐸 = 𝑋 ) |
2 |
|
frn |
⊢ ( 𝐸 : 𝑋 ⟶ 𝑌 → ran 𝐸 ⊆ 𝑌 ) |
3 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝑌 ¬ 𝑦 ∈ ran 𝐸 ↔ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) |
4 |
|
disj |
⊢ ( ( 𝑌 ∩ ran 𝐸 ) = ∅ ↔ ∀ 𝑦 ∈ 𝑌 ¬ 𝑦 ∈ ran 𝐸 ) |
5 |
|
df-ss |
⊢ ( ran 𝐸 ⊆ 𝑌 ↔ ( ran 𝐸 ∩ 𝑌 ) = ran 𝐸 ) |
6 |
|
incom |
⊢ ( ran 𝐸 ∩ 𝑌 ) = ( 𝑌 ∩ ran 𝐸 ) |
7 |
6
|
eqeq1i |
⊢ ( ( ran 𝐸 ∩ 𝑌 ) = ran 𝐸 ↔ ( 𝑌 ∩ ran 𝐸 ) = ran 𝐸 ) |
8 |
|
eqtr2 |
⊢ ( ( ( 𝑌 ∩ ran 𝐸 ) = ran 𝐸 ∧ ( 𝑌 ∩ ran 𝐸 ) = ∅ ) → ran 𝐸 = ∅ ) |
9 |
8
|
ex |
⊢ ( ( 𝑌 ∩ ran 𝐸 ) = ran 𝐸 → ( ( 𝑌 ∩ ran 𝐸 ) = ∅ → ran 𝐸 = ∅ ) ) |
10 |
7 9
|
sylbi |
⊢ ( ( ran 𝐸 ∩ 𝑌 ) = ran 𝐸 → ( ( 𝑌 ∩ ran 𝐸 ) = ∅ → ran 𝐸 = ∅ ) ) |
11 |
5 10
|
sylbi |
⊢ ( ran 𝐸 ⊆ 𝑌 → ( ( 𝑌 ∩ ran 𝐸 ) = ∅ → ran 𝐸 = ∅ ) ) |
12 |
4 11
|
syl5bir |
⊢ ( ran 𝐸 ⊆ 𝑌 → ( ∀ 𝑦 ∈ 𝑌 ¬ 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅ ) ) |
13 |
3 12
|
syl5bir |
⊢ ( ran 𝐸 ⊆ 𝑌 → ( ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅ ) ) |
14 |
2 13
|
syl |
⊢ ( 𝐸 : 𝑋 ⟶ 𝑌 → ( ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅ ) ) |
15 |
14
|
imp |
⊢ ( ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) → ran 𝐸 = ∅ ) |
16 |
15
|
adantl |
⊢ ( ( dom 𝐸 = 𝑋 ∧ ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) ) → ran 𝐸 = ∅ ) |
17 |
|
dm0rn0 |
⊢ ( dom 𝐸 = ∅ ↔ ran 𝐸 = ∅ ) |
18 |
16 17
|
sylibr |
⊢ ( ( dom 𝐸 = 𝑋 ∧ ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) ) → dom 𝐸 = ∅ ) |
19 |
|
eqeq1 |
⊢ ( 𝑋 = dom 𝐸 → ( 𝑋 = ∅ ↔ dom 𝐸 = ∅ ) ) |
20 |
19
|
eqcoms |
⊢ ( dom 𝐸 = 𝑋 → ( 𝑋 = ∅ ↔ dom 𝐸 = ∅ ) ) |
21 |
20
|
adantr |
⊢ ( ( dom 𝐸 = 𝑋 ∧ ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) ) → ( 𝑋 = ∅ ↔ dom 𝐸 = ∅ ) ) |
22 |
18 21
|
mpbird |
⊢ ( ( dom 𝐸 = 𝑋 ∧ ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) ) → 𝑋 = ∅ ) |
23 |
22
|
exp32 |
⊢ ( dom 𝐸 = 𝑋 → ( 𝐸 : 𝑋 ⟶ 𝑌 → ( ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 → 𝑋 = ∅ ) ) ) |
24 |
1 23
|
mpcom |
⊢ ( 𝐸 : 𝑋 ⟶ 𝑌 → ( ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 → 𝑋 = ∅ ) ) |
25 |
24
|
imp |
⊢ ( ( 𝐸 : 𝑋 ⟶ 𝑌 ∧ ¬ ∃ 𝑦 ∈ 𝑌 𝑦 ∈ ran 𝐸 ) → 𝑋 = ∅ ) |