Metamath Proof Explorer


Theorem f10

Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998)

Ref Expression
Assertion f10 ∅ : ∅ –1-1𝐴

Proof

Step Hyp Ref Expression
1 f0 ∅ : ∅ ⟶ 𝐴
2 funcnv0 Fun
3 df-f1 ( ∅ : ∅ –1-1𝐴 ↔ ( ∅ : ∅ ⟶ 𝐴 ∧ Fun ∅ ) )
4 1 2 3 mpbir2an ∅ : ∅ –1-1𝐴