Step |
Hyp |
Ref |
Expression |
1 |
|
feq2 |
⊢ ( 𝐴 = ∅ → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ∅ ⟶ 𝐵 ) ) |
2 |
1
|
biimpa |
⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : ∅ ⟶ 𝐵 ) |
3 |
|
f0bi |
⊢ ( 𝐹 : ∅ ⟶ 𝐵 ↔ 𝐹 = ∅ ) |
4 |
|
f10 |
⊢ ∅ : ∅ –1-1→ 𝐵 |
5 |
|
f1eq1 |
⊢ ( 𝐹 = ∅ → ( 𝐹 : ∅ –1-1→ 𝐵 ↔ ∅ : ∅ –1-1→ 𝐵 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( 𝐹 = ∅ → 𝐹 : ∅ –1-1→ 𝐵 ) |
7 |
3 6
|
sylbi |
⊢ ( 𝐹 : ∅ ⟶ 𝐵 → 𝐹 : ∅ –1-1→ 𝐵 ) |
8 |
2 7
|
syl |
⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : ∅ –1-1→ 𝐵 ) |
9 |
|
f1eq2 |
⊢ ( 𝐴 = ∅ → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : ∅ –1-1→ 𝐵 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : ∅ –1-1→ 𝐵 ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |