Metamath Proof Explorer


Theorem f102g

Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f102g ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 feq2 ( 𝐴 = ∅ → ( 𝐹 : 𝐴𝐵𝐹 : ∅ ⟶ 𝐵 ) )
2 1 biimpa ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : ∅ ⟶ 𝐵 )
3 f0bi ( 𝐹 : ∅ ⟶ 𝐵𝐹 = ∅ )
4 f10 ∅ : ∅ –1-1𝐵
5 f1eq1 ( 𝐹 = ∅ → ( 𝐹 : ∅ –1-1𝐵 ↔ ∅ : ∅ –1-1𝐵 ) )
6 4 5 mpbiri ( 𝐹 = ∅ → 𝐹 : ∅ –1-1𝐵 )
7 3 6 sylbi ( 𝐹 : ∅ ⟶ 𝐵𝐹 : ∅ –1-1𝐵 )
8 2 7 syl ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : ∅ –1-1𝐵 )
9 f1eq2 ( 𝐴 = ∅ → ( 𝐹 : 𝐴1-1𝐵𝐹 : ∅ –1-1𝐵 ) )
10 9 adantr ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → ( 𝐹 : 𝐴1-1𝐵𝐹 : ∅ –1-1𝐵 ) )
11 8 10 mpbird ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )