Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | f10d.f | ⊢ ( 𝜑 → 𝐹 = ∅ ) | |
Assertion | f10d | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f10d.f | ⊢ ( 𝜑 → 𝐹 = ∅ ) | |
2 | f10 | ⊢ ∅ : ∅ –1-1→ 𝐴 | |
3 | dm0 | ⊢ dom ∅ = ∅ | |
4 | f1eq2 | ⊢ ( dom ∅ = ∅ → ( ∅ : dom ∅ –1-1→ 𝐴 ↔ ∅ : ∅ –1-1→ 𝐴 ) ) | |
5 | 3 4 | ax-mp | ⊢ ( ∅ : dom ∅ –1-1→ 𝐴 ↔ ∅ : ∅ –1-1→ 𝐴 ) |
6 | 2 5 | mpbir | ⊢ ∅ : dom ∅ –1-1→ 𝐴 |
7 | 1 | dmeqd | ⊢ ( 𝜑 → dom 𝐹 = dom ∅ ) |
8 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
9 | 1 7 8 | f1eq123d | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 –1-1→ 𝐴 ↔ ∅ : dom ∅ –1-1→ 𝐴 ) ) |
10 | 6 9 | mpbiri | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) |