Metamath Proof Explorer


Theorem f10d

Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020)

Ref Expression
Hypothesis f10d.f ( 𝜑𝐹 = ∅ )
Assertion f10d ( 𝜑𝐹 : dom 𝐹1-1𝐴 )

Proof

Step Hyp Ref Expression
1 f10d.f ( 𝜑𝐹 = ∅ )
2 f10 ∅ : ∅ –1-1𝐴
3 dm0 dom ∅ = ∅
4 f1eq2 ( dom ∅ = ∅ → ( ∅ : dom ∅ –1-1𝐴 ↔ ∅ : ∅ –1-1𝐴 ) )
5 3 4 ax-mp ( ∅ : dom ∅ –1-1𝐴 ↔ ∅ : ∅ –1-1𝐴 )
6 2 5 mpbir ∅ : dom ∅ –1-1𝐴
7 1 dmeqd ( 𝜑 → dom 𝐹 = dom ∅ )
8 eqidd ( 𝜑𝐴 = 𝐴 )
9 1 7 8 f1eq123d ( 𝜑 → ( 𝐹 : dom 𝐹1-1𝐴 ↔ ∅ : dom ∅ –1-1𝐴 ) )
10 6 9 mpbiri ( 𝜑𝐹 : dom 𝐹1-1𝐴 )