Step |
Hyp |
Ref |
Expression |
1 |
|
f12dfv.a |
⊢ 𝐴 = { 𝑋 , 𝑌 } |
2 |
|
dff14b |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
3 |
1
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
4 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
5 |
4
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑋 } ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
7 |
6
|
neeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
5 7
|
raleqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
|
sneq |
⊢ ( 𝑥 = 𝑌 → { 𝑥 } = { 𝑌 } ) |
10 |
9
|
difeq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑌 } ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) ) |
12 |
11
|
neeq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
10 12
|
raleqbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
8 13
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
16 |
1
|
difeq1i |
⊢ ( 𝐴 ∖ { 𝑋 } ) = ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) |
17 |
|
difprsn1 |
⊢ ( 𝑋 ≠ 𝑌 → ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) = { 𝑌 } ) |
18 |
16 17
|
eqtrid |
⊢ ( 𝑋 ≠ 𝑌 → ( 𝐴 ∖ { 𝑋 } ) = { 𝑌 } ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐴 ∖ { 𝑋 } ) = { 𝑌 } ) |
20 |
19
|
raleqdv |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
22 |
21
|
neeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
23 |
22
|
ralsng |
⊢ ( 𝑌 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
26 |
20 25
|
bitrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
27 |
1
|
difeq1i |
⊢ ( 𝐴 ∖ { 𝑌 } ) = ( { 𝑋 , 𝑌 } ∖ { 𝑌 } ) |
28 |
|
difprsn2 |
⊢ ( 𝑋 ≠ 𝑌 → ( { 𝑋 , 𝑌 } ∖ { 𝑌 } ) = { 𝑋 } ) |
29 |
27 28
|
eqtrid |
⊢ ( 𝑋 ≠ 𝑌 → ( 𝐴 ∖ { 𝑌 } ) = { 𝑋 } ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐴 ∖ { 𝑌 } ) = { 𝑋 } ) |
31 |
30
|
raleqdv |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
33 |
32
|
neeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
34 |
33
|
ralsng |
⊢ ( 𝑋 ∈ 𝑈 → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
37 |
31 36
|
bitrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
38 |
26 37
|
anbi12d |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) ) |
39 |
|
necom |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
40 |
39
|
biimpi |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) → ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
41 |
40
|
pm4.71i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
42 |
38 41
|
bitr4di |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
43 |
15 42
|
bitrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
44 |
3 43
|
bitrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
45 |
44
|
anbi2d |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) ) |
46 |
2 45
|
bitrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) ) |