| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f13idfv.a | ⊢ 𝐴  =  ( 0 ... 2 ) | 
						
							| 2 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 3 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 4 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 5 | 2 3 4 | 3pm3.2i | ⊢ ( 0  ∈  ℤ  ∧  1  ∈  ℤ  ∧  2  ∈  ℤ ) | 
						
							| 6 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 7 |  | 0ne2 | ⊢ 0  ≠  2 | 
						
							| 8 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 9 | 6 7 8 | 3pm3.2i | ⊢ ( 0  ≠  1  ∧  0  ≠  2  ∧  1  ≠  2 ) | 
						
							| 10 |  | fz0tp | ⊢ ( 0 ... 2 )  =  { 0 ,  1 ,  2 } | 
						
							| 11 | 1 10 | eqtri | ⊢ 𝐴  =  { 0 ,  1 ,  2 } | 
						
							| 12 | 11 | f13dfv | ⊢ ( ( ( 0  ∈  ℤ  ∧  1  ∈  ℤ  ∧  2  ∈  ℤ )  ∧  ( 0  ≠  1  ∧  0  ≠  2  ∧  1  ≠  2 ) )  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 1 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 2 )  ∧  ( 𝐹 ‘ 1 )  ≠  ( 𝐹 ‘ 2 ) ) ) ) ) | 
						
							| 13 | 5 9 12 | mp2an | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 1 )  ∧  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ 2 )  ∧  ( 𝐹 ‘ 1 )  ≠  ( 𝐹 ‘ 2 ) ) ) ) |