Step |
Hyp |
Ref |
Expression |
1 |
|
f13idfv.a |
⊢ 𝐴 = ( 0 ... 2 ) |
2 |
|
0z |
⊢ 0 ∈ ℤ |
3 |
|
1z |
⊢ 1 ∈ ℤ |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
2 3 4
|
3pm3.2i |
⊢ ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ ) |
6 |
|
0ne1 |
⊢ 0 ≠ 1 |
7 |
|
0ne2 |
⊢ 0 ≠ 2 |
8 |
|
1ne2 |
⊢ 1 ≠ 2 |
9 |
6 7 8
|
3pm3.2i |
⊢ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) |
10 |
|
fz0tp |
⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } |
11 |
1 10
|
eqtri |
⊢ 𝐴 = { 0 , 1 , 2 } |
12 |
11
|
f13dfv |
⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 2 ) ∧ ( 𝐹 ‘ 1 ) ≠ ( 𝐹 ‘ 2 ) ) ) ) ) |
13 |
5 9 12
|
mp2an |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 2 ) ∧ ( 𝐹 ‘ 1 ) ≠ ( 𝐹 ‘ 2 ) ) ) ) |