| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-f1 | ⊢ ( ◡ ◡ 𝐴 : dom  𝐴 –1-1→ V  ↔  ( ◡ ◡ 𝐴 : dom  𝐴 ⟶ V  ∧  Fun  ◡ ◡ ◡ 𝐴 ) ) | 
						
							| 2 |  | dffn2 | ⊢ ( ◡ ◡ 𝐴  Fn  dom  𝐴  ↔  ◡ ◡ 𝐴 : dom  𝐴 ⟶ V ) | 
						
							| 3 |  | dmcnvcnv | ⊢ dom  ◡ ◡ 𝐴  =  dom  𝐴 | 
						
							| 4 |  | df-fn | ⊢ ( ◡ ◡ 𝐴  Fn  dom  𝐴  ↔  ( Fun  ◡ ◡ 𝐴  ∧  dom  ◡ ◡ 𝐴  =  dom  𝐴 ) ) | 
						
							| 5 | 3 4 | mpbiran2 | ⊢ ( ◡ ◡ 𝐴  Fn  dom  𝐴  ↔  Fun  ◡ ◡ 𝐴 ) | 
						
							| 6 | 2 5 | bitr3i | ⊢ ( ◡ ◡ 𝐴 : dom  𝐴 ⟶ V  ↔  Fun  ◡ ◡ 𝐴 ) | 
						
							| 7 |  | relcnv | ⊢ Rel  ◡ 𝐴 | 
						
							| 8 |  | dfrel2 | ⊢ ( Rel  ◡ 𝐴  ↔  ◡ ◡ ◡ 𝐴  =  ◡ 𝐴 ) | 
						
							| 9 | 7 8 | mpbi | ⊢ ◡ ◡ ◡ 𝐴  =  ◡ 𝐴 | 
						
							| 10 | 9 | funeqi | ⊢ ( Fun  ◡ ◡ ◡ 𝐴  ↔  Fun  ◡ 𝐴 ) | 
						
							| 11 | 6 10 | anbi12ci | ⊢ ( ( ◡ ◡ 𝐴 : dom  𝐴 ⟶ V  ∧  Fun  ◡ ◡ ◡ 𝐴 )  ↔  ( Fun  ◡ 𝐴  ∧  Fun  ◡ ◡ 𝐴 ) ) | 
						
							| 12 | 1 11 | bitri | ⊢ ( ◡ ◡ 𝐴 : dom  𝐴 –1-1→ V  ↔  ( Fun  ◡ 𝐴  ∧  Fun  ◡ ◡ 𝐴 ) ) |