Step |
Hyp |
Ref |
Expression |
1 |
|
df-f1 |
⊢ ( ◡ ◡ 𝐴 : dom 𝐴 –1-1→ V ↔ ( ◡ ◡ 𝐴 : dom 𝐴 ⟶ V ∧ Fun ◡ ◡ ◡ 𝐴 ) ) |
2 |
|
dffn2 |
⊢ ( ◡ ◡ 𝐴 Fn dom 𝐴 ↔ ◡ ◡ 𝐴 : dom 𝐴 ⟶ V ) |
3 |
|
dmcnvcnv |
⊢ dom ◡ ◡ 𝐴 = dom 𝐴 |
4 |
|
df-fn |
⊢ ( ◡ ◡ 𝐴 Fn dom 𝐴 ↔ ( Fun ◡ ◡ 𝐴 ∧ dom ◡ ◡ 𝐴 = dom 𝐴 ) ) |
5 |
3 4
|
mpbiran2 |
⊢ ( ◡ ◡ 𝐴 Fn dom 𝐴 ↔ Fun ◡ ◡ 𝐴 ) |
6 |
2 5
|
bitr3i |
⊢ ( ◡ ◡ 𝐴 : dom 𝐴 ⟶ V ↔ Fun ◡ ◡ 𝐴 ) |
7 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
8 |
|
dfrel2 |
⊢ ( Rel ◡ 𝐴 ↔ ◡ ◡ ◡ 𝐴 = ◡ 𝐴 ) |
9 |
7 8
|
mpbi |
⊢ ◡ ◡ ◡ 𝐴 = ◡ 𝐴 |
10 |
9
|
funeqi |
⊢ ( Fun ◡ ◡ ◡ 𝐴 ↔ Fun ◡ 𝐴 ) |
11 |
6 10
|
anbi12ci |
⊢ ( ( ◡ ◡ 𝐴 : dom 𝐴 ⟶ V ∧ Fun ◡ ◡ ◡ 𝐴 ) ↔ ( Fun ◡ 𝐴 ∧ Fun ◡ ◡ 𝐴 ) ) |
12 |
1 11
|
bitri |
⊢ ( ◡ ◡ 𝐴 : dom 𝐴 –1-1→ V ↔ ( Fun ◡ 𝐴 ∧ Fun ◡ ◡ 𝐴 ) ) |