Metamath Proof Explorer


Theorem f1co

Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of TakeutiZaring p. 25. (Contributed by NM, 28-May-1998) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion f1co ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( 𝐹𝐺 ) : 𝐴1-1𝐶 )

Proof

Step Hyp Ref Expression
1 f1cof1 ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( 𝐹𝐺 ) : ( 𝐺𝐵 ) –1-1𝐶 )
2 f1f ( 𝐺 : 𝐴1-1𝐵𝐺 : 𝐴𝐵 )
3 fimacnv ( 𝐺 : 𝐴𝐵 → ( 𝐺𝐵 ) = 𝐴 )
4 2 3 syl ( 𝐺 : 𝐴1-1𝐵 → ( 𝐺𝐵 ) = 𝐴 )
5 4 adantl ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( 𝐺𝐵 ) = 𝐴 )
6 5 eqcomd ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → 𝐴 = ( 𝐺𝐵 ) )
7 f1eq2 ( 𝐴 = ( 𝐺𝐵 ) → ( ( 𝐹𝐺 ) : 𝐴1-1𝐶 ↔ ( 𝐹𝐺 ) : ( 𝐺𝐵 ) –1-1𝐶 ) )
8 6 7 syl ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( ( 𝐹𝐺 ) : 𝐴1-1𝐶 ↔ ( 𝐹𝐺 ) : ( 𝐺𝐵 ) –1-1𝐶 ) )
9 1 8 mpbird ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( 𝐹𝐺 ) : 𝐴1-1𝐶 )