| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1cof1 |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) |
| 2 |
|
f1f |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
fimacnv |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 6 |
5
|
eqcomd |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 7 |
|
f1eq2 |
⊢ ( 𝐴 = ( ◡ 𝐺 “ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) ) |
| 9 |
1 8
|
mpbird |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) |