Step |
Hyp |
Ref |
Expression |
1 |
|
df-f1 |
⊢ ( 𝐹 : 𝐵 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) |
2 |
|
df-f1 |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) |
3 |
|
fco |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
4 |
|
funco |
⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) |
5 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) |
6 |
5
|
funeqi |
⊢ ( Fun ◡ ( 𝐹 ∘ 𝐺 ) ↔ Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) |
7 |
4 6
|
sylibr |
⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
8 |
7
|
ancoms |
⊢ ( ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
9 |
3 8
|
anim12i |
⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) ∧ ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
10 |
9
|
an4s |
⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
11 |
1 2 10
|
syl2anb |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
12 |
|
df-f1 |
⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ↔ ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) |