Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | f1cocnv1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
2 | f1ococnv1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |