Metamath Proof Explorer


Theorem f1cocnv1

Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011)

Ref Expression
Assertion f1cocnv1 ( 𝐹 : 𝐴1-1𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 f1f1orn ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴1-1-onto→ ran 𝐹 )
2 f1ococnv1 ( 𝐹 : 𝐴1-1-onto→ ran 𝐹 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )
3 1 2 syl ( 𝐹 : 𝐴1-1𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )