| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-f1 |
⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 ↔ ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun ◡ 𝐹 ) ) |
| 2 |
|
df-f1 |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) |
| 3 |
|
ffun |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → Fun 𝐺 ) |
| 4 |
|
fcof |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ) |
| 6 |
|
funco |
⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) |
| 7 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) |
| 8 |
7
|
funeqi |
⊢ ( Fun ◡ ( 𝐹 ∘ 𝐺 ) ↔ Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) |
| 9 |
6 8
|
sylibr |
⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
| 11 |
5 10
|
anim12i |
⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) ∧ ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 12 |
11
|
an4s |
⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun ◡ 𝐹 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 13 |
1 2 12
|
syl2anb |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 14 |
|
df-f1 |
⊢ ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) –1-1→ 𝐷 ↔ ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) –1-1→ 𝐷 ) |