| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-f1 | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷  ↔  ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 2 |  | df-f1 | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐺 ) ) | 
						
							| 3 |  | ffun | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  Fun  𝐺 ) | 
						
							| 4 |  | fcof | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  𝐺 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷 ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷 ) | 
						
							| 6 |  | funco | ⊢ ( ( Fun  ◡ 𝐺  ∧  Fun  ◡ 𝐹 )  →  Fun  ( ◡ 𝐺  ∘  ◡ 𝐹 ) ) | 
						
							| 7 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝐺 )  =  ( ◡ 𝐺  ∘  ◡ 𝐹 ) | 
						
							| 8 | 7 | funeqi | ⊢ ( Fun  ◡ ( 𝐹  ∘  𝐺 )  ↔  Fun  ( ◡ 𝐺  ∘  ◡ 𝐹 ) ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( ( Fun  ◡ 𝐺  ∧  Fun  ◡ 𝐹 )  →  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( Fun  ◡ 𝐹  ∧  Fun  ◡ 𝐺 )  →  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) | 
						
							| 11 | 5 10 | anim12i | ⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  ∧  ( Fun  ◡ 𝐹  ∧  Fun  ◡ 𝐺 ) )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 12 | 11 | an4s | ⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  ◡ 𝐹 )  ∧  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐺 ) )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 13 | 1 2 12 | syl2anb | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 14 |  | df-f1 | ⊢ ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) –1-1→ 𝐷  ↔  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) –1-1→ 𝐷 ) |