Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
2 |
|
f1f |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
3 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) |
4 |
3
|
ex |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( 𝑋 ∈ 𝐴 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) ) |
5 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) |
6 |
5
|
ex |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( 𝑌 ∈ 𝐴 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) |
7 |
4 6
|
anim12d |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) |
11 |
|
f1veqaeq |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
12 |
1 10 11
|
syl2an2r |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
13 |
|
f1veqaeq |
⊢ ( ( 𝐺 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
15 |
12 14
|
syld |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |