Metamath Proof Explorer


Theorem f1cofveqaeq

Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021)

Ref Expression
Assertion f1cofveqaeq ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → 𝐹 : 𝐵1-1𝐶 )
2 f1f ( 𝐺 : 𝐴1-1𝐵𝐺 : 𝐴𝐵 )
3 ffvelrn ( ( 𝐺 : 𝐴𝐵𝑋𝐴 ) → ( 𝐺𝑋 ) ∈ 𝐵 )
4 3 ex ( 𝐺 : 𝐴𝐵 → ( 𝑋𝐴 → ( 𝐺𝑋 ) ∈ 𝐵 ) )
5 ffvelrn ( ( 𝐺 : 𝐴𝐵𝑌𝐴 ) → ( 𝐺𝑌 ) ∈ 𝐵 )
6 5 ex ( 𝐺 : 𝐴𝐵 → ( 𝑌𝐴 → ( 𝐺𝑌 ) ∈ 𝐵 ) )
7 4 6 anim12d ( 𝐺 : 𝐴𝐵 → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑌 ) ∈ 𝐵 ) ) )
8 2 7 syl ( 𝐺 : 𝐴1-1𝐵 → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑌 ) ∈ 𝐵 ) ) )
9 8 adantl ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑌 ) ∈ 𝐵 ) ) )
10 9 imp ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑌 ) ∈ 𝐵 ) )
11 f1veqaeq ( ( 𝐹 : 𝐵1-1𝐶 ∧ ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑌 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → ( 𝐺𝑋 ) = ( 𝐺𝑌 ) ) )
12 1 10 11 syl2an2r ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → ( 𝐺𝑋 ) = ( 𝐺𝑌 ) ) )
13 f1veqaeq ( ( 𝐺 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐺𝑋 ) = ( 𝐺𝑌 ) → 𝑋 = 𝑌 ) )
14 13 adantll ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐺𝑋 ) = ( 𝐺𝑌 ) → 𝑋 = 𝑌 ) )
15 12 14 syld ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → 𝑋 = 𝑌 ) )