Metamath Proof Explorer


Theorem f1cofveqaeqALT

Description: Alternate proof of f1cofveqaeq , 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion f1cofveqaeqALT ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 f1f ( 𝐺 : 𝐴1-1𝐵𝐺 : 𝐴𝐵 )
2 fvco3 ( ( 𝐺 : 𝐴𝐵𝑋𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
3 2 adantrr ( ( 𝐺 : 𝐴𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
4 fvco3 ( ( 𝐺 : 𝐴𝐵𝑌𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) )
5 4 adantrl ( ( 𝐺 : 𝐴𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) )
6 3 5 eqeq12d ( ( 𝐺 : 𝐴𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) )
7 6 ex ( 𝐺 : 𝐴𝐵 → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ) )
8 1 7 syl ( 𝐺 : 𝐴1-1𝐵 → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ) )
9 8 adantl ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( ( 𝑋𝐴𝑌𝐴 ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ) )
10 9 imp ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) )
11 f1co ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) → ( 𝐹𝐺 ) : 𝐴1-1𝐶 )
12 f1veqaeq ( ( ( 𝐹𝐺 ) : 𝐴1-1𝐶 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) )
13 11 12 sylan ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) )
14 10 13 sylbird ( ( ( 𝐹 : 𝐵1-1𝐶𝐺 : 𝐴1-1𝐵 ) ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑌 ) ) → 𝑋 = 𝑌 ) )