Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
3 |
2
|
adantrr |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
4 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) |
5 |
4
|
adantrl |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
7 |
6
|
ex |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
8 |
1 7
|
syl |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
11 |
|
f1co |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) |
12 |
|
f1veqaeq |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
13 |
11 12
|
sylan |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
14 |
10 13
|
sylbird |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |