| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnfi | ⊢ ( 𝐹  ∈  Fin  →  ran  𝐹  ∈  Fin ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  ran  𝐹  ∈  Fin ) | 
						
							| 3 |  | f1dm | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 4 |  | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝐴  =  dom  𝐹  →  ( 𝐴  ∈  𝑉  ↔  dom  𝐹  ∈  𝑉 ) ) | 
						
							| 6 |  | f1oeq2 | ⊢ ( 𝐴  =  dom  𝐹  →  ( 𝐹 : 𝐴 –1-1-onto→ ran  𝐹  ↔  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝐴  =  dom  𝐹  →  ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 )  ↔  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) ) | 
						
							| 8 | 7 | eqcoms | ⊢ ( dom  𝐹  =  𝐴  →  ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 )  ↔  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) ) | 
						
							| 9 | 8 | biimpd | ⊢ ( dom  𝐹  =  𝐴  →  ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 )  →  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) ) | 
						
							| 10 | 9 | expcomd | ⊢ ( dom  𝐹  =  𝐴  →  ( 𝐹 : 𝐴 –1-1-onto→ ran  𝐹  →  ( 𝐴  ∈  𝑉  →  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) ) ) | 
						
							| 11 | 3 4 10 | sylc | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  ( 𝐴  ∈  𝑉  →  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) ) | 
						
							| 12 | 11 | impcom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 ) ) | 
						
							| 14 |  | f1oeng | ⊢ ( ( dom  𝐹  ∈  𝑉  ∧  𝐹 : dom  𝐹 –1-1-onto→ ran  𝐹 )  →  dom  𝐹  ≈  ran  𝐹 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  dom  𝐹  ≈  ran  𝐹 ) | 
						
							| 16 |  | enfii | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  dom  𝐹  ≈  ran  𝐹 )  →  dom  𝐹  ∈  Fin ) | 
						
							| 17 | 2 15 16 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  dom  𝐹  ∈  Fin ) | 
						
							| 18 |  | f1fun | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  Fun  𝐹 ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  Fun  𝐹 ) | 
						
							| 20 |  | fundmfibi | ⊢ ( Fun  𝐹  →  ( 𝐹  ∈  Fin  ↔  dom  𝐹  ∈  Fin ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  ( 𝐹  ∈  Fin  ↔  dom  𝐹  ∈  Fin ) ) | 
						
							| 22 | 17 21 | mpbird | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  ran  𝐹  ∈  Fin )  →  𝐹  ∈  Fin ) | 
						
							| 23 | 22 | ex | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ∈  Fin  →  𝐹  ∈  Fin ) ) | 
						
							| 24 | 1 23 | impbid2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  ∈  Fin  ↔  ran  𝐹  ∈  Fin ) ) |