Metamath Proof Explorer


Theorem f1dom2g

Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015) (Proof shortened by BTernaryTau, 25-Sep-2024)

Ref Expression
Assertion f1dom2g ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1f ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )
2 fex2 ( ( 𝐹 : 𝐴𝐵𝐴𝑉𝐵𝑊 ) → 𝐹 ∈ V )
3 1 2 syl3an1 ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉𝐵𝑊 ) → 𝐹 ∈ V )
4 3 3coml ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1𝐵 ) → 𝐹 ∈ V )
5 f1dom3g ( ( 𝐹 ∈ V ∧ 𝐵𝑊𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )
6 4 5 syld3an1 ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )