Step |
Hyp |
Ref |
Expression |
1 |
|
f1dom3fv3dif.v |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
2 |
|
f1dom3fv3dif.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
3 |
|
f1dom3fv3dif.f |
⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) |
4 |
|
f1f |
⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) |
6 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
7 |
6
|
3mix1d |
⊢ ( 𝜑 → ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
8 |
1
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
9 |
|
eltpg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
11 |
7 10
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
13 |
5 12
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ) |
14 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
15 |
14
|
3mix2d |
⊢ ( 𝜑 → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) |
16 |
1
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
17 |
|
eltpg |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
19 |
15 18
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
21 |
5 20
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ) |
22 |
1
|
simp3d |
⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
23 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
26 |
5 25
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) |
27 |
13 21 26
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) |
28 |
27
|
expcom |
⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 → ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) ) |
29 |
4 28
|
syl |
⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 → ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) ) |
30 |
3 29
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) |
31 |
1 2 3
|
f1dom3fv3dif |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |
32 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝑥 ≠ 𝑦 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ) ) |
33 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝑥 ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ) ) |
34 |
32 33
|
3anbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ) |
35 |
|
neeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ↔ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) ) |
36 |
|
neeq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( 𝑦 ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ) |
37 |
35 36
|
3anbi13d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ) ) |
38 |
|
neeq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |
39 |
|
neeq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |
40 |
38 39
|
3anbi23d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) ) |
41 |
34 37 40
|
rspc3ev |
⊢ ( ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑅 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) |
42 |
30 31 41
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑅 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) |