Step |
Hyp |
Ref |
Expression |
1 |
|
f1dom3fv3dif.v |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
2 |
|
f1dom3fv3dif.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
3 |
|
f1dom3fv3dif.f |
⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) |
4 |
2
|
simp1d |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
5 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
6 |
5
|
3mix1d |
⊢ ( 𝜑 → ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
7 |
1
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
eltpg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
10 |
6 9
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
11 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
12 |
11
|
3mix2d |
⊢ ( 𝜑 → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) |
13 |
1
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
14 |
|
eltpg |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
16 |
12 15
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
17 |
|
f1fveq |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
18 |
3 10 16 17
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
19 |
18
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 ≠ 𝐵 ) ) |
20 |
4 19
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
21 |
2
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
22 |
1
|
simp3d |
⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
23 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
25 |
|
f1fveq |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 = 𝐶 ) ) |
26 |
3 10 24 25
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 = 𝐶 ) ) |
27 |
26
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 ≠ 𝐶 ) ) |
28 |
21 27
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ) |
29 |
2
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
30 |
|
f1fveq |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
31 |
3 16 24 30
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
32 |
31
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 ≠ 𝐶 ) ) |
33 |
29 32
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) |
34 |
20 28 33
|
3jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |