| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1dom3fv3dif.v | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							f1dom3fv3dif.n | 
							⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							f1dom3fv3dif.f | 
							⊢ ( 𝜑  →  𝐹 : { 𝐴 ,  𝐵 ,  𝐶 } –1-1→ 𝑅 )  | 
						
						
							| 4 | 
							
								2
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  𝐴  =  𝐴 )  | 
						
						
							| 6 | 
							
								5
							 | 
							3mix1d | 
							⊢ ( 𝜑  →  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵  ∨  𝐴  =  𝐶 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							eltpg | 
							⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵  ∨  𝐴  =  𝐶 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵  ∨  𝐴  =  𝐶 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  | 
						
						
							| 11 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  𝐵  =  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							3mix2d | 
							⊢ ( 𝜑  →  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵  ∨  𝐵  =  𝐶 ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑌 )  | 
						
						
							| 14 | 
							
								
							 | 
							eltpg | 
							⊢ ( 𝐵  ∈  𝑌  →  ( 𝐵  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵  ∨  𝐵  =  𝐶 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵  ∨  𝐵  =  𝐶 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐵  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  | 
						
						
							| 17 | 
							
								
							 | 
							f1fveq | 
							⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 ,  𝐶 } –1-1→ 𝑅  ∧  ( 𝐴  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐵  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 18 | 
							
								3 10 16 17
							 | 
							syl12anc | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							necon3bid | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐵 )  ↔  𝐴  ≠  𝐵 ) )  | 
						
						
							| 20 | 
							
								4 19
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐵 ) )  | 
						
						
							| 21 | 
							
								2
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐶 )  | 
						
						
							| 22 | 
							
								1
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑍 )  | 
						
						
							| 23 | 
							
								
							 | 
							tpid3g | 
							⊢ ( 𝐶  ∈  𝑍  →  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  | 
						
						
							| 25 | 
							
								
							 | 
							f1fveq | 
							⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 ,  𝐶 } –1-1→ 𝑅  ∧  ( 𝐴  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐶 )  ↔  𝐴  =  𝐶 ) )  | 
						
						
							| 26 | 
							
								3 10 24 25
							 | 
							syl12anc | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐶 )  ↔  𝐴  =  𝐶 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							necon3bid | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐶 )  ↔  𝐴  ≠  𝐶 ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐶 ) )  | 
						
						
							| 29 | 
							
								2
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 30 | 
							
								
							 | 
							f1fveq | 
							⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 ,  𝐶 } –1-1→ 𝑅  ∧  ( 𝐵  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) )  →  ( ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐶 )  ↔  𝐵  =  𝐶 ) )  | 
						
						
							| 31 | 
							
								3 16 24 30
							 | 
							syl12anc | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐶 )  ↔  𝐵  =  𝐶 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							necon3bid | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  ≠  ( 𝐹 ‘ 𝐶 )  ↔  𝐵  ≠  𝐶 ) )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ≠  ( 𝐹 ‘ 𝐶 ) )  | 
						
						
							| 34 | 
							
								20 28 33
							 | 
							3jca | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐵 )  ∧  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ 𝐶 )  ∧  ( 𝐹 ‘ 𝐵 )  ≠  ( 𝐹 ‘ 𝐶 ) ) )  |