Metamath Proof Explorer


Theorem f1domfi2

Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion f1domfi2 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
2 fnfi ( ( 𝐹 Fn 𝐴𝐴 ∈ Fin ) → 𝐹 ∈ Fin )
3 1 2 sylan ( ( 𝐹 : 𝐴1-1𝐵𝐴 ∈ Fin ) → 𝐹 ∈ Fin )
4 3 ancoms ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴1-1𝐵 ) → 𝐹 ∈ Fin )
5 4 3adant2 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉𝐹 : 𝐴1-1𝐵 ) → 𝐹 ∈ Fin )
6 f1dom3g ( ( 𝐹 ∈ Fin ∧ 𝐵𝑉𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )
7 5 6 syld3an1 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉𝐹 : 𝐴1-1𝐵 ) → 𝐴𝐵 )